Imaginary Whittaker Modules for Extended Affine Lie Algebras Song Shi a Dissertation Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy Graduate Program in Mathematics and Statistics

نویسنده

  • SONG SHI
چکیده

We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra t and irreducible Whittaker modules for Lie algebra t̃ obtained by adjoining m degree derivations d1, d2, . . . , dm to t. Using these results, we construct imaginary Whittaker modules for non-twisted extended affine Lie algebras and prove that the imaginary Whittaker modules of Z-independent level are always irreducible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy Graduate Program in Neuroscience

.............................................................................................................................. ii Acknowledgements ............................................................................................................ iv Dedication .......................................................................................................................... vi T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016